Methods used to calculate efficiency and work for near isothermal method of
gas compression and expansion

Introduction

This paper defines what is meant by the term “near
isothermal process” in terms of an isothermal efficiency (z).
It then shows how the isothermal efficiency (z) can be used
to calculate the work done in a polytropic process and how
the isothermal efficiency can be calculated knowing the
geometry of the heat absorbing and releasing structure
(HARS).

This paper assumes the reader is familiar with the method
developed by Crowley of near isothermal compression and
expansion.

Definition and Formulas

Isothermal efficiency is sometimes defined by others as:

__ Isothermal work
ziso -

Actual work

We prefer to use a different definition of isothermal
efficiency, using temperature change to calculate where a
process lays between being fully adiabatic and fully
isothermal. So if there is no temperature change the process
is fully isothermal and has an efficiency of 1, but if the
temperature change is the same as an adiabatic process then
the efficiency is 0. We define the isothermal efficiency as.

AT, —AT,
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Where
z Isothermal Efficiency
ATY Temperature change for an adiabatic process index
Y=Cp/Cv

ATn Temperature change for actual process with

polytropic index n

It will also be shown below, that
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Where
PY Pressure after an adiabatic process

Pl Pressure after an isothermal process

Pn Pressure after actual process with polytropic index
n

Using definition of efficiency (z) in equations (1) or (2) allows
a direct calculation of the work in a polytropic process. It will
be proved below that the actual work

WDn = WDI + (1-z) (WDY-WDI) (3)
Where

WDn  Work done for polytropic process with index n
WDI Work done for isothermal process

WDY  Work done for adiabatic process with index of Y

From equation (3) it can be seen that when the isothermal
efficiency z is 1 the work done for a given volume change is
the isothermal work done. The actual work changes linearly
with reducing isothermal efficiency (z) such that when z
equals 0 the work is the adiabatic work done.

For a HARS similar to the type shown in figure 1 and used in
an isothermal process it will also be shown that
approximately
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When the Fourier number W > 0.2 (5

Where

K gas thermal conductivity

Nu Nusselt Number

T Gas temperature (isothermal)

Pn Maximum Gas Pressure (isothermal)

Hz Speed of compressor in hertz

G Gap between sheets of HARS



Figure 1

Proof of Equation (2)

Equation (1) is a definition so does not require a proof.

Equation (2) is derived from equation (1) as follows.

For a polytropic process let
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Initial volume

Actual volume

Polytropic index

Adiabatic index Cp/Cv

Initial temperature

Temperature for polytropic process at volume V
Temperature for isothermal process at volume V
Temperature for adiabatic process at volume V
Initial pressure

Pressure at volume V for polytropic process
Pressure for adiabatic process at volume V

Pressure for isothermal process at volume V

Py = P1. (%)y 7)
Pn = P1. (%)n (8)
Pl — Pll;Vl (9)

Dividing equation 7 by 9
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Similarly (%) = Z—’Il
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TT ~ Tn
So Tn = T;f;‘f
Similarly Ty = T;fg'l"

Substituting equation (8) for Pn into equation (12)

Tn=T1.P1(2) L
Therefore rn=71.(2)"
similarly TY = T1. (%)(H)
ATY =TY —T1 = TL. (%)(H) -T1

(n-1)
ATn =Tn —T1 = T1. (%) —T1

Substituting for ATY & ATn into equation (1)
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Dividing through by T1
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Substituting equations (10) & (11) into equation (18)
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Multiplying equation (19) through by PI
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Proof of Equation (3)

Rearranging equation (2)
Pn =Py — z(Py — PI)
Pn=({1—-2z)Py+zPI (20)
Let x=1-z
So Pn =x.Py +z.PI (21)

Using equation (7) and (9) to substitute for PY and Pl in
equation (21)

Y
Pn = x.P1. (%) +2.250 (22)
Pn=2zPLVLV ' +x.PLVI .V (23)
Now WDn= [ Pndv
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But (E) =
1% P1

So

WDn = zP1.V1in (%) + IXTy [Py.V — PLV1]  (24)

But  WDI = P1.Vlln (%) (25)

And WDy = ﬁ [Py.V — P1.V1] (26)

Formulas (25) and (26) for the work done isothermally and
adiabatically are taken from “Fluid Mechanics” 4™ edition
page 21 by Douglas, Gasiorek and Swaffield

So WDn =z.WDI + x.WDY
But x =1z

WDn = z.WDI + (1-z).WDY
Rearranging we get

WDn = WDI + (1-z) (WDY-WDI) (3)

Proof of Equation (4) and (5)

This proof is based on methods defined in “Heat transfer a
Practical Approach” by Yunus A Cengel. 1998. Pages 232 to
235.
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Figure 2

Cengel method uses 4 dimensionless numbers to define a
temperature profile with time and position inside a large
plane wall as shown in figure 2. At time t=0 the initial
temperature is Ti, and as t->oo the temperature is T-. The
Cengel method allows for the general heat transfer case
where at the boundary wall at distance L from the centre
there is an insulating layer with heat transfer coefficient h,
so the temperature at L is higher than T—. However in the
case of the HARS used in Crowley’s method of compression
and expansion the boundary layer are the sheets of the
HARS which are practically at a constant temperature and it
is only the gas between the sheets of the HARS which
changes temperature during a compression or expansion
cycle.

If there was no HARS the temperature of the gas would
change adiabatically and this temperature would be
constant through the whole volume of the gas. But the
compression or expansion of the gas occurs over a fixed
period of time (half the piston cycle time). During this half
cycle period, heat is transferred between the gas and HARS
and it is this heat transfer that ensures the process is near
isothermal. Using the method defined by Cengel it is
possible to calculate the dimensionless temperature profile
between the sheets of the HARS at the end of the
compression or expansion cycle and from this temperature
profile the efficiency (z) can be calculated.

Dimensionless temperature as defined in Cengel-

TH)-Teo (27)

Q(x't)z Ti-Teo



To calculate the efficiency we need to know the average
temperature of the gas.

At some distance “a” from the centre line the actual gas
temperature will be the same as the average gas
temperature. And it is this average temperature we use to
calculate the efficiency (z).

T, —
Average dimensionless temp 6 ¢)= % (27)
i—loo

=T,
Now TizTo _ 4

Ti—Too
o 1— 9 Ti-To _ Tad)-Tw

(@.)=7, 1o Ti—Teo
(Ti—Te0)—(T(q,t)-Too)
1 - 9(a,t)= =

Ti—Two

If initial temperature (T;) is due to an adiabatic
compression. From inspection of figure 2 it can be seen that

ATY =T, — Ty

And ATn = T(a,t)—Tw
ATY-AT

So 1- 9(a,t)= AT -

So from equation 1

zZ = 1 —_ H(a,t) (28)

Biot number Bi =— (29)

In this case temperature at the edges in figure 2 is at a
constant temperature because the edges are the sheets of
the HARS so h=co

Therefore Bi=oo (30)

From Cengel for parallel walls

Qe = Ae~M7 cos (A, x/L) (31)

The Heisler chats (table 4-1 Cengel) gives the following
values when Biot number Bi=oe

A, =1.2732 (32)

A, =15708= 2 (33)
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The term cos (4, x/L) in equation (31) generates the
temperature profile from the centre to the edge when x=L.
To find the average dimensionless temperature the average
value of this term is required.

1 (L X
Average value = —f coS (——) dx
LY0 2L

2L

= [=sin(C)]

=2 (34)

Substituting (32), (33) & (34) into (31)

Qan = 0.8105¢ 24677 5)
Substituting (35) into (28)
z=1—0.8105e724677 36)

Dimensionless time

at

Fourier number 1 = "] (37)
Thermal diffusivity a = % (38)
Density p= RF% (39)
But R=Cp-Cv

So P = reorm (40)

Substituting (40) into (38)

_ (Cp—Cv)Nu.K.Tn

a
Cp.Pn
1\ Nu.K.Tn

a=(1-7)"0 (41)

The time for heat transfer t=—— (42)
2Hz
. G

Distance L=E (43)

Substituting (41), (42) and (43) into (37)

= (1 _ l) 2Nu.K.TrZL. (44)
v/ Pn.Hz.G

Substituting equation (44) into (36)
z =1 — 0.81e*93(/y=DKNuUT/(Pn.Hz6?) (4)

Cengel states that equation 31 is only valid for Fourier
number greater than 0.2

So 7>0.2 (45)
Substituting (44) into (45)

2(1-2)NuKTn
When Fourier number ~ —X——>0.2 (5)
PRHZG

When proving equation (4) a number of implied assumptions
were made. Some of these assumptions may tend to
overestimate the efficiency (z) while others will tend to
underestimate the efficiency. The main assumptions are
discussed below.

The main implied assumption is that the heat to be
transferred in or out of the HARS is available at the start of
the cycle, however the heat is generated during the
compression or expansion stroke so the time available for
heat transfer will be less than that implied by equation (42).

However the piston will usually be driven by a crank so as the
piston approaches the end of the stroke its velocity will
reduce allowing proportionally more time for the heat to be
transferred at the end of the stroke.



The thermal diffusivity equation (41) assumes a constant
(maximum) pressure Pn which will result in the minimum
diffusivity. However for most of the piston stroke the
pressure will be a lot less so the diffusivity and hence
isothermal efficiency (z) will be higher.

Further work is required to improve the accuracy of equation
(4) by accounting for these assumptions in the model.
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