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gas compression and expansion 
 

 

Introduction 
 

This paper defines what is meant by the term “near 

isothermal process” in terms of an isothermal efficiency (z). 

It then shows how the isothermal efficiency (z) can be used 

to calculate the work done in a polytropic process and how 

the isothermal efficiency can be calculated knowing the 

geometry of the heat absorbing and releasing structure 

(HARS).  

This paper assumes the reader is familiar with the method 

developed by Crowley of near  isothermal compression and 

expansion.  

Definition and Formulas   
 

Isothermal efficiency is sometimes defined by others as: 

 

 𝜁𝑖𝑠𝑜 =
𝐼𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑤𝑜𝑟𝑘

𝐴𝑐𝑡𝑢𝑎𝑙 𝑤𝑜𝑟𝑘
  

 

We prefer to use a different definition of isothermal 

efficiency, using temperature change to calculate where a 

process lays between being fully adiabatic and fully 

isothermal. So if there is no temperature change the process 

is fully isothermal and has an efficiency of 1, but if the 

temperature change is the same as an adiabatic process then 

the efficiency is 0. We define the isothermal efficiency as. 

𝑧 =
∆𝑇𝛾−∆𝑇𝑛

∆𝑇𝛾
     (1) 

Where 

 z Isothermal Efficiency 

ΔTϒ  Temperature change for an adiabatic process index 

ϒ=Cp/Cv 

ΔTn  Temperature change for actual process with 

polytropic index n 

It will also be shown below, that  

𝑧 =
𝑃𝛾−𝑃𝑛

𝑃𝛾−𝑃𝐼
   (2) 

Where 

Pϒ  Pressure after an adiabatic process 

PI  Pressure after an isothermal process 

Pn Pressure after actual process with polytropic index 

n 

Using definition of efficiency (z) in equations (1) or (2) allows 

a direct calculation of the work in a polytropic process. It will 

be proved below that the actual work  

WDn = WDI + (1-z) (WDϒ-WDI)   (3) 

Where 

WDn Work done for polytropic process with index n 

WDI Work done for isothermal process  

WDϒ Work done for adiabatic process with index of ϒ 

From equation (3) it can be seen that when the isothermal 

efficiency z is 1 the work done for a given volume change is 

the isothermal work done. The actual work changes linearly 

with reducing isothermal efficiency (z) such that when z 

equals 0 the work is the adiabatic work done.  

For a HARS similar to the type shown in figure 1 and used in 

an isothermal process it will also be shown that 

approximately 

𝑧 = 1 − 0.81𝑒4.93(1
𝛾⁄ −1)𝐾.𝑁𝑢.𝑇/(𝑃𝑛.𝐻𝑧.𝐺2)  (4) 

When the Fourier number  
2(1−

1

𝛾
)𝑁𝑢𝐾𝑇𝑛

𝑃𝑛.𝐻𝑧.𝐺2 > 0.2  (5) 

 

Where 

K gas thermal conductivity 

Nu Nusselt Number 

T Gas temperature (isothermal) 

Pn Maximum Gas Pressure (isothermal) 

Hz Speed of compressor in hertz 

G Gap between sheets of HARS 

 



 

Figure 1 

 

Proof of Equation (2) 
 

Equation (1) is a definition so does not require a proof. 

Equation (2) is derived from equation (1) as follows. 

For a polytropic process let  

V1  Initial volume 

V Actual volume 

n Polytropic index 

𝛾 Adiabatic index Cp/Cv 

T1 Initial temperature 

Tn Temperature for polytropic process at volume V 

TI=T1 Temperature for isothermal process at volume V 

Tϒ Temperature for adiabatic process at volume V  

P1  Initial pressure  

Pn Pressure at volume V for polytropic process 

Pϒ Pressure for adiabatic process at volume V 

PI Pressure for isothermal process at volume V 

 

𝑃𝛾 = 𝑃1. (
𝑉1

𝑉
)

𝛾

   (7) 

𝑃𝑛 = 𝑃1. (
𝑉1

𝑉
)

𝑛

   (8) 

𝑃𝐼 =
𝑃1.𝑉1

𝑉
   (9) 

Dividing equation 7 by 9 

  
𝑃𝛾

𝑃𝐼
= (

𝑉1

𝑉
)

𝛾 𝑉

𝑉1
= (

𝑉1

𝑉
)

(𝛾−1)

   

So  (
𝑉1

𝑉
)

(𝛾−1)

=
𝑃𝛾

𝑃𝐼
   (10) 

Similarly  (
𝑉1

𝑉
)

(𝑛−1)

=
𝑃𝑛

𝑃𝐼
   (11) 

 

𝑃1. 𝑉1

𝑇1
=

𝑃𝑛. 𝑉

𝑇𝑛
 

   

So  𝑇𝑛 =
𝑇1.𝑃𝑛.𝑉

𝑃1.𝑉1
   (12) 

Similarly  𝑇𝛾 =
𝑇1.𝑃𝛾.𝑉

𝑃1.𝑉1
   (13) 

Substituting equation (8) for Pn into equation (12) 

 

   𝑇𝑛 = 𝑇1. 𝑃1 (
𝑉1

𝑉
)

𝑛

.
𝑉

𝑃1.𝑉1
 

Therefore  𝑇𝑛 = 𝑇1. (
𝑉1

𝑉
)

(𝑛−1)

  (14) 

Similarly   𝑇ϒ = 𝑇1. (
𝑉1

𝑉
)

(𝛾−1)

  (15) 

 Δ𝑇ϒ = 𝑇ϒ − T1 = T1. (
𝑉1

𝑉
)

(𝛾−1)

− 𝑇1 (16) 

 Δ𝑇𝑛 = 𝑇𝑛 − T1 = T1. (
𝑉1

𝑉
)

(𝑛−1)

− 𝑇1 (17) 

 

Substituting for Δ𝑇ϒ & Δ𝑇𝑛 into equation (1) 

𝑧 =
T1. (

𝑉1
𝑉

)
(𝛾−1)

− T1. (
𝑉1
𝑉

)
(𝑛−1)

T1. (
𝑉1
𝑉

)
(𝑛−1)

− 𝑇1

 

 

Dividing through by T1 

𝑧 =
(

𝑉1

𝑉
)

(𝛾−1)
−(

𝑉1

𝑉
)

(𝑛−1)

(
𝑉1

𝑉
)

(𝑛−1)
−1

  (18) 

 

Substituting equations (10) & (11) into equation (18) 

𝑧 =
𝑃𝛾

𝑃𝐼
−

𝑃𝑛

𝑃𝐼
𝑃𝛾

𝑃𝐼
−1

   (19) 

 

Multiplying equation (19) through by PI 

  𝑧 =
𝑃𝛾−𝑃𝑛

𝑃𝛾−𝑃𝐼
   (2) 

 



So  𝑧 =
∆𝑇𝛾−∆𝑇𝑛

∆𝑇𝛾
 =

𝑃𝛾−𝑃𝑛

𝑃𝛾−𝑃𝐼
  

 

Proof of Equation (3) 
 

Rearranging equation (2) 

 𝑃𝑛 = 𝑃𝛾 − 𝑧(𝑃𝛾 − 𝑃𝐼) 

 𝑃𝑛 = (1 − 𝑧)𝑃𝛾 + 𝑧. 𝑃𝐼   (20) 

Let x=1-z 

So 𝑃𝑛 = 𝑥. 𝑃𝛾 + 𝑧. 𝑃𝐼   (21) 

Using equation (7) and (9) to substitute for Pϒ and PI in 

equation (21) 

 𝑃𝑛 = 𝑥. 𝑃1. (
𝑉1

𝑉
)

𝛾

+ 𝑧.
𝑃1.𝑉1

𝑉
  (22) 

𝑃𝑛 = 𝑧. 𝑃1. 𝑉1. 𝑉−1 + 𝑥. 𝑃1. 𝑉1𝛾. 𝑉−𝛾  (23) 

Now 𝑊𝐷𝑛 = ∫ 𝑃𝑛 𝑑𝑉
𝑉

𝑉1
 

 = [𝑉1
𝑉 z. P1. V1. ln(V) + 𝑥.

𝑃1.𝑉1𝛾

1−𝛾
𝑉1−𝛾]  

= 𝑧𝑃1. 𝑉1𝑙𝑛 (
𝑉

𝑉1
) + 𝑥.

𝑃1. 𝑉1𝛾

1 − 𝛾
[𝑉1−𝛾 − 𝑉11−𝛾] 

=  𝑧𝑃1. 𝑉1𝑙𝑛 (
𝑉

𝑉1
) +

𝑥

1−𝛾
[𝑃1. (

𝑉1

𝑉
)

𝛾

𝑉 − 𝑃1. 𝑉1]  

 

But  (
𝑉1

𝑉
)

𝛾

=
𝑃𝛾

𝑃1
  

So 

𝑊𝐷𝑛 = 𝑧𝑃1. 𝑉1𝑙𝑛 (
𝑉

𝑉1
) +

𝑋

1−𝛾
[𝑃𝛾. 𝑉 − 𝑃1. 𝑉1] (24)

  

But  𝑊𝐷𝐼 = 𝑃1. 𝑉1𝑙𝑛 (
𝑉

𝑉1
)   (25) 

And  𝑊𝐷𝛾 =
1

1−𝛾
[𝑃𝛾. 𝑉 − 𝑃1. 𝑉1]  (26) 

Formulas (25) and (26) for the work done isothermally and 

adiabatically are taken from “Fluid Mechanics” 4th edition 

page 21 by Douglas, Gasiorek and Swaffield 

So WDn = z.WDI + x.WDϒ 

But  x  = 1-z  

 WDn = z.WDI + (1-z).WDϒ 

Rearranging we get 

WDn = WDI + (1-z) (WDϒ-WDI)  (3) 

 

 

Proof of Equation (4) and (5) 
 

This proof is based on methods defined in “Heat transfer a 

Practical Approach” by Yunus A Cengel. 1998. Pages 232 to 

235. 

 

Figure 2 

Cengel method uses 4 dimensionless numbers to define a 

temperature profile with time and position inside a large 

plane wall as shown in figure 2. At time t=0 the initial 

temperature is Ti, and as t→∞ the temperature is T∞. The 

Cengel method allows for the general heat transfer case 

where at the boundary wall at distance L from the centre 

there is an insulating layer with heat transfer coefficient h, 

so the temperature at L is higher than T∞. However in the 

case of the HARS used in Crowley’s method of compression 

and expansion the boundary layer are the sheets of the 

HARS which are practically at a constant temperature and it 

is only the gas between the sheets of the HARS which 

changes temperature during a compression or expansion 

cycle.  

If there was no HARS the temperature of the gas would 

change adiabatically and this temperature would be 

constant through the whole volume of the gas. But the 

compression or expansion of the gas occurs over a fixed 

period of time (half the piston cycle time).  During this half 

cycle period, heat is transferred between the gas and HARS 

and it is this heat transfer that ensures the process is near 

isothermal. Using the method defined by Cengel it is 

possible to calculate the dimensionless temperature profile 

between the sheets of the HARS at the end of the 

compression or expansion cycle and from this temperature 

profile the efficiency (z) can be calculated. 

Dimensionless temperature as defined in Cengel- 

 𝜃(𝑥,𝑡)=

𝑇(𝑥,𝑡)−𝑇∞

𝑇𝑖−𝑇∞
   (27) 

 



To calculate the efficiency we need to know the average 

temperature of the gas.  

At some distance “a” from the centre line the actual gas 

temperature will be the same as the average gas 

temperature. And it is this average temperature we use to 

calculate the efficiency (z).  

Average dimensionless temp 𝜃(𝑎,𝑡)=

𝑇(𝑎,𝑡)−𝑇∞

𝑇𝑖−𝑇∞
  (27) 

Now   
𝑇𝑖−𝑇∞

𝑇𝑖−𝑇∞
= 1 

So   1 − 𝜃(𝑎,𝑡)=
𝑇𝑖−𝑇∞

𝑇𝑖−𝑇∞
−

𝑇(𝑎,𝑡)−𝑇∞

𝑇𝑖−𝑇∞
  

  1 − 𝜃(𝑎,𝑡)=

(𝑇𝑖−𝑇∞)−(𝑇(𝑎,𝑡)−𝑇∞)

𝑇𝑖−𝑇∞
  

If initial temperature (𝑇𝑖) is due to an adiabatic 

compression. From inspection of figure 2 it can be seen that 

   Δ𝑇ϒ = 𝑇𝑖 − 𝑇∞ 

And  Δ𝑇n = 𝑇(𝑎,𝑡)−𝑇∞
 

So   1 − 𝜃(𝑎,𝑡)=
Δ𝑇ϒ−Δ𝑇n

Δ𝑇ϒ
 

So from equation 1 

  𝑧 = 1 − 𝜃(𝑎,𝑡)   (28) 

Biot number   𝐵𝑖 =
ℎ𝐿

𝑘
    (29) 

In this case temperature at the edges in figure 2 is at a 

constant temperature because the edges are the sheets of 

the HARS so h=∞  

Therefore Bi=∞     (30) 

From Cengel for parallel walls 

𝑄(𝑥,𝑡) = 𝐴1𝑒−𝜆1
2𝜏. cos (𝜆1 𝑥 𝐿)⁄   (31) 

 

The Heisler chats (table 4-1 Cengel) gives the following 

values when Biot number Bi=∞ 

 𝐴1 = 1.2732    (32) 

 𝜆1 = 1.5708 =  
𝜋

2
   (33) 

The term cos (𝜆1 𝑥 𝐿)⁄  in equation (31) generates the 

temperature profile from the centre to the edge when x=L. 

To find the average dimensionless temperature the average 

value of this term is required.  

Average value =
1

𝐿
∫ 𝑐𝑜𝑠 (

𝜋

2

𝑥

𝐿
)  𝑑𝑥

𝐿

0
 

  =
1

𝐿
[0

𝐿2𝐿

𝜋
𝑆𝑖𝑛(

𝜋 𝑥

2 𝐿
)] 

  =
2

𝜋
    (34) 

Substituting (32), (33) & (34) into (31) 

 

 𝑄(𝑎,𝑡) = 0.8105𝑒−2.467𝜏   (35) 

Substituting (35) into (28) 

 𝑧 = 1 − 0.8105𝑒−2.467𝜏   (36) 

Dimensionless time  

Fourier number  𝜏 =
𝛼𝑡

𝐿2    (37) 

Thermal diffusivity 𝛼 =
𝑁𝑢.𝐾

𝜌.𝐶𝑝
   (38) 

Density  𝜌 =
𝑃𝑛

𝑅𝑇𝑛
    (39) 

But  R=Cp-Cv  

So   𝜌 =
𝑃𝑛

(𝐶𝑝−𝐶𝑣)𝑇𝑛
   (40) 

Substituting   (40) into (38) 

  𝛼 =
(𝐶𝑝−𝐶𝑣)𝑁𝑢.𝐾.𝑇𝑛

𝐶𝑝.𝑃𝑛
  

  𝛼 = (1 −
1

𝛾
)

𝑁𝑢.𝐾.𝑇𝑛

𝑃𝑛
  (41) 

The time for heat transfer   𝑡 =
1

2𝐻𝑧
  (42) 

Distance  L=
𝐺

2
    (43) 

Substituting (41), (42) and (43) into (37) 

 𝜏 = (1 −
1

𝛾
)

2𝑁𝑢.𝐾.𝑇𝑛.

𝑃𝑛.𝐻𝑧.𝐺2    (44) 

Substituting equation (44) into (36) 

𝑧 = 1 − 0.81𝑒4.93(1
𝛾⁄ −1)𝐾.𝑁𝑢.𝑇/(𝑃𝑛.𝐻𝑧.𝐺2)   (4) 

Cengel states that equation 31 is only valid for Fourier 

number greater than 0.2 

So   𝜏 > 0.2    (45) 

Substituting (44) into (45) 

When Fourier number  
2(1−

1

𝛾
)𝑁𝑢.𝐾𝑇𝑛

𝑃𝑛.𝐻𝑧.𝐺2 > 0.2  (5) 

 

When proving equation (4) a number of implied assumptions 

were made. Some of these assumptions may tend to 

overestimate the efficiency (z) while others will tend to 

underestimate the efficiency.  The main assumptions are 

discussed below. 

The main implied assumption is that the heat to be 

transferred in or out of the HARS is available at the start of 

the cycle, however the heat is generated during the 

compression or expansion stroke so the time available for 

heat transfer will be less than that implied by equation (42).   

However the piston will usually be driven by a crank so as the 

piston approaches the end of the stroke its velocity will 

reduce allowing proportionally more time for the heat to be 

transferred at the end of the stroke.  



The thermal diffusivity equation (41) assumes a constant 

(maximum) pressure Pn which will result in the minimum 

diffusivity. However for most of the piston stroke the 

pressure will be a lot less so the diffusivity and hence 

isothermal efficiency (z) will be higher. 

 

Further work is required to improve the accuracy of equation 

(4) by accounting for these assumptions in the model.  
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